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Abstract
It is shown that nodal sequences determine the underlying manifold up
to scaling within classes of rectangles with Dirichlet boundary conditions,
separable two-dimensional tori, two-dimensional flat Klein bottles and flat tori
in two and three dimensions.

PACS numbers: 02.30.Zz, 03.65.Ge

1. Introduction

One of the most famous inverse problems in mathematical physics is the question of whether
one can hear the shape of a drum, which was posed by Kac in 1966 [1]. The spectrum of the
Laplace operator σM(�) on a Riemannian manifold M, representing the drum, corresponds to
the frequencies of the eigenmodes in which this manifold is vibrating. Since 1964, it has been
known that the answer to this question is negative, when Milnor [2] found a pair of isospectral,
non-isometric flat tori in 16 dimensions. Many examples of such pairs are known today. For
an overview on different aspects of the theory of isospectral manifolds the works of Sunada,
Gordon, Webb, Wolpert and Brooks should be mentioned [3–5]. Recent results and examples
of isospectral manifolds are presented in [14, 15]. Forty years after the foundation of the
area of isospectrality another invariant object of the manifold M, connected to its vibration
modes, has joined the field of interest [6]. The eigenfunctions corresponding to a specific
eigenvalue λ form an eigenspace Eλ, due to the equation �ψ = λψ . For every element of
the eigenspace ψ ∈ Eλ its nodal domains are defined as the connected components of the set
M \ ψ−1(0). The set ψ−1(0) is called the nodal set of ψ . A visualization of the nodal set is
given by the Chladni figures that arise as those patterns formed by sand poured on a vibrating
membrane [7]. Assigning to each eigenvalue λ, the set of nodal counts ν(ψ), the numbers of
nodal domains N (λ) = {ν(ψ1), ν(ψ2), . . .} that are obtained by elements of its eigenspace ψ1,

ψ2, . . . ∈ Eλ and ordering these sets according to the position of λ within the spectrum, we
obtain a sequence N(M) = {N (λ1),N (λ2), . . . ,N (λk), . . .} called the nodal sequence. The
definition of N (λ) is specific to each class of manifolds. This will be done later in this paper.
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Due to the existence of isospectral manifolds, it is known that the information stored
in the spectrum of a Riemannian manifold does not suffice to determine the manifold
itself. It is therefore interesting to investigate whether the nodal sequence reveals similar
or complementary information about the underlying geometry. This idea is due to Smilansky
(cf, e.g., [6, 8]). Recent progress shows that this approach is very promising. For different
objects such as graphs, billiards, tori and surfaces of revolution, nodal sequences have been
investigated, and in each case they reveal information about the underlying objects. It was
possible to distinguish between integrable and chaotic billiards by using the nodal sequence
[6]. Examples of isospectral manifolds and graphs have been distinguished by using their
nodal sequences [9–11], which leads to the assumption that the nodal sequence contains
complementary information about the geometry to the spectrum. It was even possible to find
a trace formula for the nodal counting function of different manifolds [8], which shows a deep
similarity to the ideas that once led to the original isospectrality problem.

We want to focus now on a specific part of the investigation of spectra of manifolds.
Changing the isospectrality problem slightly by restricting it to a class of manifolds leads to a
new question. Are there classes within which it is possible to hear the shape of a drum? The
answer is positive, and examples for such classes are low-dimensional flat tori or surfaces of
revolution [17–19]. This problem can be translated to the study of nodal sequences, which
we call the inverse nodal problem. It was solved recently by Smilansky et al for surfaces of
revolution [13] and rectangles were treated in [12].

In this paper, methods to reconstruct several types of manifolds from their nodal sequences
are presented. It is always assumed that the given nodal sequence belongs to a manifold of a
specific type. We will investigate two- and three-dimensional flat tori. Furthermore, we will
study two-dimensional rectangles, separable tori and Klein bottles. Within all these classes
the inverse nodal problem will be solved.

In contrast to [12] where the authors reveal that the dependence of the distribution of
the normalized nodal numbers on the finite spectral interval contains sufficient information
to resolve between different rectangles, we use characteristic structures within the nodal
sequences which are related to prime numbers to deduce the manifold.

The work supports the conjecture indicated by Smilansky et al about the importance of the
nodal sequence for the determination of manifolds by their vibration behaviour, and therefore
should encourage the further study of nodal sequences in general.

2. Some manifolds and their nodal sequences

In this section, different classes of manifolds are introduced. Formulae for the number of
nodal domains are given. As the number of nodal domains is invariant under scaling of the
manifold, we will reduce the free parameters in each class of manifolds by one. All manifolds
are equipped with the Euclidean metric. The Dirichlet problem on a manifold M is given by

(DP)

⎧⎪⎪⎨
⎪⎪⎩

−�ψ = λψ

ψ|∂M = 0
ψ ∈ C∞(M)\{0}
λ ∈ C.

In the following, we introduce classes of manifolds originating from rectangles. In all cases
we start with rectangles of side lengths a and b. To reduce the free parameters in each class by
one, we set a = 1 and introduce the ratio of the sides α := 1/b. From now on all quantities
are expressed in terms of α.
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2.1. Dirichlet rectangles and two-dimensional separable tori

We define Rα = [0, 1] × [0, α−1] for α ∈ R+. Without loss of generality we choose α � 1,
since Rα and Rα−1 are isometric. The corresponding class is called R = {Rα : α � 1}. With
m, n ∈ N the solutions to the Dirichlet problem on Rα are

ψmn = sin(πmx) sin(πnαy) with λmn = π2(m2 + α2n2).

Only for irrational α the eigenspaces are always one dimensional. For general α eigenspaces
of higher dimensions may appear. In this case, we only study the number of nodal domains
for the eigenfunctions mentioned above. The same is valid for the classes of manifolds that
will be introduced later.

The nodal lines of the eigenfunctions form a regular checkerboard pattern, and the number
of nodal domains is therefore given by

νmn = ν(ψmn) = m · n. (1)

To introduce the class of two-dimensional separable flat tori, for R+ � α � 1, the equivalence
relation ∼T

α in R
2 is defined:

R
2 � (x, y) ∼T

α (x ′, y ′) ⇐⇒ (x ′, y ′) = (x + k, y + l · α−1)

for α−1 ∈ R+ and k, l ∈ Z.

We define the corresponding flat torus Tα by Tα = R
2/ ∼T

α . The corresponding class is called
T = {Tα : α � 1}. For m, n ∈ Z we choose the following bases of the eigenspaces of the
solutions to the Dirichlet problem:

ψmn(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

cos(2πmx) cos(2πnαy) m, n � 0
sin(2πmx) sin(2πnαy) m, n < 0
cos(2πmx) sin(2πnαy) m � 0, n < 0
sin(2πmx) cos(2πnαy) m < 0, n � 0.

The eigenvalues are given by

λmn = 4π2(m2 + α2n2).

The structure of the nodal set is similar to the rectangle case. According to [8] the number of
nodal domains is given by

νmn = (2|m| + δm0)(2|n| + δn0). (2)

2.2. Flat Klein bottles

Given α ∈ R+ and the following equivalence condition,

(x, y) ∼K
α (x ′, y ′) ⇐⇒ (x ′ = x and y ′ = y + k · α−1) or

(x ′ = x + l · 1/2 and y ′ = −y) or

(x ′ = x + m and y ′ = y)

for k ∈ Z, l ∈ 2Z + 1, m ∈ Z.

The Klein bottle Kα is defined by Kα = R
2/∼K

α . The corresponding class is given by
K = {Kα : α ∈ R+}. A visualization of the Klein bottle is given in figure 1, where the
symmetry operations are indicated by A for the translation described by the first line of
the definition of the equivalence condition and B for the twist described by the second and the
third line. The eigenfunctions for λmn are given by

ψmn(x) =
{

exp(2π imx) cos(2πnαy) m even, n � 0
exp(2π imx) sin(2πnαy) m odd, n 
= 0.

3
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B

y = b

x = a/2 x = a

A

Figure 1. Klein bottle, A and B indicate the symmetry operations

Considering only the real parts we choose a basis of the eigenspace of the form

ψRe
mn (x) =

{
cos(2πmx) cos(2πnαy) m even, n � 0
cos(2πmx) sin(2πnαy) m odd, n 
= 0.

The eigenvalues are

λmn = 4π2(m2 + α2n2),

for (m ∈ 2Z, Z � n � 0) or (m ∈ 2Z + 1, Z � n 
= 0). The number of nodal domains is given
by

νmn = 2|mn| + δm0(|n| + 1) + |m|δn0. (3)

The first term is due to the checkerboard structure of the nodal set, when m, n 
= 0. If either
m = 0 or n = 0 the nodal domains are parallel stripes. This gives rise to the second and
third terms, where the form of the second term is due to the twisting. Note that νmn is defined
only for pairs (m, n) ∈ Z

2, which fulfil the conditions of the definition of the corresponding
eigenfunctions above.

2.3. Flat tori

The last type of manifolds we will treat is flat tori. We will give the general definition here.
Later we will focus on two and three dimensions. For a set of n linearly independent vectors
(γi)1�i�n ⊂ R

n the corresponding lattice is defined by � = spanZ{γ1, . . . , γn}. We obtain
a flat torus by T� = (Rn/�, g�), where g� = g0/� and g0 is the standard metric. Like
in the previous cases we will reduce the number of free parameters in the class of flat tori
in n dimensions by one. In this case we set ‖γ1‖ = 1. The resulting class of flat tori in n
dimensions is defined by

Ftn = {T� : � is an n-dimensional lattice, ‖γ1‖ = 1}.
The spectrum and the eigenfunctions of the Laplacian may be expressed using the dual lattice
�∗ = {γ ∗ ∈ R

n : 〈γ ∗, γ 〉 ∈ Z} as follows. The eigenvalues of the Laplace operator on a flat
torus are given by

λγ ∗ = 4π2‖γ ∗‖2, γ ∗ ∈ �∗.
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Explicitly, the spectrum is given as follows. For a basis (g∗
i )i of the dual lattice �∗ of �, given

in terms of the standard basis in R
n by the representation g∗

i = (
g1

i , . . . , g
n
i

)
, we define the

matrix A = (
g

j

i

)
ij

. The Gramian matrix is then defined by G = AA�. The spectrum of the
flat torus T� = R

n/� is obtained as follows:

σT�
(�) = {4π2q�Gq|q ∈ Z

n}.
The eigenspace of an eigenvalue λ ∈ σT�

(�) is given by

Eλ = spanC{x �→ exp(2π〈γ ∗, x〉)|γ ∗ ∈ �∗, 4π2‖γ ∗‖2 = λ}.
We will focus on the real and imaginary parts of the eigenfunctions that form a basis of these
eigenspaces, namely

ψ�
γ ∗(x) = cos(2π〈γ ∗, x〉) and ψ�

γ ∗(x) = sin(2π〈γ ∗, x〉).
In [16], a formula for the number of nodal domains of these eigenfunctions was proved. It is
identical for both types of eigenfunctions and given by

ν(γ ∗) = 2gcd(k1, . . . , kn). (4)

Here γ ∗ = ∑
i kiγ

∗
i , where (γ ∗

i ) is any basis of the dual lattice �∗ and ‘gcd’ stands for the
greatest common denominator. It is easy to see that the number of nodal domains is invariant
under a transformation of the basis.

The definition of nodal domains on flat tori used in this work is different to that used in
the works [10, 11], which ignores the continuous boundary conditions of the corresponding
torus. A similar approach which makes use of the finiteness of the set of eigenvalues with a
fixed nodal count as used in [11] is therefore impossible here.

2.4. Nodal sequences

We will give a definition of the nodal sequences in the specific cases. For every eigenvalue
λi in the ordered spectrum 0 = λ0 � λ1 � λ2 � . . . � λi � . . ., we define the set of nodal
counts of eigenfunctions within the corresponding eigenspace. For rectangles, separable flat
tori and Klein bottles we define

N (λ) = {νmn : λmn = λ}.
For flat tori we define

N (λ) = {ν(γ ∗) : γ ∗ ∈ �∗, λγ ∗ = λ}.
The nodal sequence is then obtained by ordering these sets according to the growing
eigenvalues:

N = {N (λ1),N (λ2), . . .}.

3. Inverse problems

3.1. Inverse spectral problems

Solving the inverse spectral problem for a Riemannian manifold means deduce its metric from
the given spectrum of the Laplacian or show that there are no isospectral, non-isometric pairs
within a set of manifolds. This problem was solved for subclasses of surfaces of revolution
[17, 18]. For flat tori this problem is solved in two dimensions (cf [19] p 149–51), where
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an explicit method to reconstruct the dual lattice from the spectrum is given. For three-
dimensional flat tori it is known that there are no isospectral, non-isometric pairs [20]. For
later use we join the results for flat tori to a first lemma.

Lemma 1. There are no isospectral, non-isometric pairs in Ft2 and Ft3. A method to
reconstruct the metric from the spectrum is known in dimension two.

3.2. Inverse nodal problems

Solving the inverse nodal problem for a Riemannian manifold means determine its metric by
using its nodal sequence or show that there are no pairs of non-isometric manifolds with the
same nodal sequence. In every case we assume that the given nodal sequence belongs to a
specific type of manifold. We are now able to formulate our main results.

Theorem 1. Within the sets R,T and K, the parameter α is uniquely determined by the nodal
sequence. An explicit method to reconstruct α exists.

In the following section we will prove this theorem by deriving the specific method for every
case. In the case of flat tori, the following result can be achieved.

Theorem 2. Within the set Ft2, a flat torus is explicitly determined by its nodal sequence. A
method to explicitly reconstruct the flat torus from its nodal sequence exists. There is no pair
of non-isometric flat tori in Ft3 with identical nodal sequences.

The preceding theorem will be proven with use of lemma 1. We will reconstruct the spectrum
from the nodal sequence and thereby show that they contain similar information.

4. Proof of the main theorem

The idea of the proof is similar for the different cases. The nodal sequence contains the relative
position of the eigenvalue λi and the set of numbers N (λi). While the position allows us to
deduce information about the relative size of two eigenvalues, the set N (λi) gives a restriction
on the possible numbers n,m ∈ Z. Combining these information carefully it is possible to
construct a sequence that converges to the free parameter α.

4.1. Dirichlet rectangles

We will prove theorem 1 for the set R. Let Rα ∈ R and

N(Rα) = {N (λ1),N (λ2),N (λ3), . . . ,N (λi), . . .}
be the nodal sequence of Rα . We denote the prime numbers by P and choose p ∈ P ∪ {1}.
There are exactly two positions i, j with i < j in N(Rα), with p ∈ N (λi),N (λj ). As α � 1
we conclude

λi = λ1p = 1 + α2p2 � p2 + α2 = λp1 = λj .

We omit the prefactor π2 of the eigenvalues in the remainder of this paper; it has no influence
on the results. Therefore, when we find a nodal count on exactly two positions, we know that
the one with the higher index belongs to an eigenvalue of the form p2 + α2, while the other
one belongs to an eigenvalue of the form 1 + α2p2. In the general case we have any natural
number N ∈ N with the prime decomposition

N = p1 · p2 · . . . · pk, where pi � pi+1, pi ∈ P.

6



J. Phys. A: Math. Theor. 42 (2009) 175209 D Klawonn

For any decomposition

N = pi1 · . . . · pil · pil+1 · . . . · pik with 1 � l � k and π({1, . . . , k}) = {i1, . . . , ik},
where π is any permutation, the following relation is valid:

N2 + α2 >
(
pi1 · . . . · pil

)2
+ α2

(
pil+1 · . . . · pik

)2
.

Therefore, we can detect the position of every eigenvalue of the form N2 + α2 for N ∈ N.
As shown above, we also know the position of every eigenvalue of the form 1 + α2p2 for
p ∈ P ∪ {1}. With this information we want to determine α. We construct two sequences and
use the more dense sequence (N2 + α2)N∈N to put bounds on the sequence (1 + α2p2)p∈P. To
every h ∈ P ∪ {1}, let h± ∈ N be defined by

h+ = min{i ∈ N : 1 + h2α2 < i2 + α2}
h− = max{i ∈ N : i2 + α2 < 1 + h2α2}.

It follows from the definition that

Hh
− := (

h2
− − 1

)
(h2 − 1)−1 < α2 <

(
h2

+ − 1
)
(h2 − 1)−1 =: Hh

+

for every h ∈ P. It suffices to show

Hh
+ − Hh

−
h→∞−→ 0. (5)

Then follows Hh
± −→ α2, which completes the proof. In order to show convergence, we

decompose ∥∥Hh
+ − Hh

−
∥∥ = ‖(h+ − h−)(h − 1)−1‖‖(h+ + h−)(h + 1)−1‖. (6)

We denote by �s� = min{i ∈ N : i � s} and �s� = max{i ∈ N : i � s}. Then we can obtain
an upper, respectively lower, bound as follows.

We have h− � h+ � h′
+ := �hα + 1�. This follows, by definition, from

(h′
+)

2 + α2 � (hα + 1)2 + α2 � h2α2 + 1.

As lower bound we choose h′
− := �hα� � h− � h+, because

(h′
−)2 + α2 � α2h2 + α2 � 1 + α2h2.

We can now easily deduce the following estimates:

‖(h+ + h−)(h + 1)−1‖ � 2‖h+(h + 1)−1‖
� 2‖�hα + 1�(h + 1)−1‖
� 2‖(hα + 2)(h + 1)−1‖ → 2α

and

‖(h+ − h−)(h − 1)−1‖ � ‖(h′
+ − h′

−)(h − 1)−1‖
= ∥∥(�hα + 1� − �hα�)(h − 1)−1

∥∥
� 2(h − 1)−1 → 0.

With (6) we obtain (5) and theorem 1 is proven for R. �
There is a way to shorten this proof, which was pointed out by Smilansky. We present it

here as an alternative to the preceding proof.
Let A be the volume of the rectangle. We denote the position of an eigenvalue λ in

the spectrum by pos(λ) and recall that for N ∈ N the position of the eigenvalue of the form
N2 +α2 can be read from the nodal sequence. The position of an eigenvalue equals the spectral

7
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counting function at this eigenvalue. Therefore, we can use the Weyl term of the trace formula
to express the position of the eigenvalue asymptotically by the leading term in λ [21]:

pos(λ) = (4π)−1A · λ + . . . .

This implies the following relation for the eigenvalues of the form N2 + α2:

pos(N2 + α2) = (4πα)−1(N2 + α2) + . . . .

Using this formula we are able to determine α for N → ∞.
Similar arguments apply to the other classes of manifolds, originating from rectangles,

discussed in the following.

4.2. Separable tori

In a similar way as in the preceding proof, it is possible to determine α for separable tori
in two dimensions. This is due to the specific formula for the nodal count (cf formula (2)).
Whenever a nodal count of the form νmn = 2k with k ∈ 2Z + 1 appears in the nodal sequence,
the eigenvalue in the corresponding position is either k2 or α2k2. As α � 1 it is possible to
identify the bigger position as k2 and the smaller as α2k2. It is, therefore, possible to determine
the position for every eigenvalue of the form k2 or α2k2 for k odd. Similar to the previous case
we define, for h ∈ 2Z + 1,

h+ = min{i ∈ 2Z + 1 : α2h2 < i2}
h− = max{i ∈ 2Z + 1 : i2 < α2h2}.

We have

Hh
− := (h−/h)2 < α2 < (h+/h)2 =: Hh

+ .

The difference h+ − h− can be bounded by using

�hα − 2� < h− < h+ < �hα + 2�.
The convergence follows as in the previous case and theorem 1 is proven for T. �

4.3. Flat Klein bottles

The Klein bottle case is crucially different to the cases above. This is due to the fact that the
equivalence condition is not invariant under a rotation of π/2. Therefore, Kα and Kα−1 are
not isometric, and α ∈ R+. To reconstruct α from the nodal sequence it is therefore necessary
to distinguish between the cases α > 1, α = 1 and α < 1. In each case, it will be possible to
apply similar techniques as before. Distinguishing between the cases is possible by analysing
the nodal sequence for low eigenvalues.

First of all it is easy to see that whenever an odd nodal count νi = (n+ 1) ∈ 2Z+ 1 occurs,
the corresponding eigenvalue has the form λ0n = n2α2 and is simple. Here one should recall
the restrictions to allowed pairs (m, n) in the Klein bottle case. We investigate the eigenvalues
with nodal count ν = 2. Due to (3) the following pairs (m, n) ∈ Z have nodal count ν = 2:

(m1, n1) = (1, 1), (m2, n2) = (2, 0), and (m3, n3) = (0, 1).

The corresponding eigenvalues are

λ11 = 1 + α2, λ20 = 4 and λ01 = α2.

The nodal sequence reveals the positions of this set as a whole, but not the specific positions
of its elements. Due to the remark above on odd nodal counts we also know the position of

8
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λ02 = 4α2. If the position of 4α2 is bigger than the other three, we can conclude α2 > 1. If
the position of 4α2 is smaller than exactly one position, it follows that

4 > 4α2 > 1 + α2 > α2, so α2 < 1.

When 4α2 is on the third position, it follows α2 < 1. The fourth position is impossible. If 4α2

shares the maximal position of the set with one element, this element is 4 and we obtain α = 1.
If it shares the second position, we can conclude α2 = 1/3. These are all the possibilities, so
we can either determine α or decide whether α2 < (>)1.

We treat the cases α2 > 1 and α2 < 1 separately and start with α2 < 1. We use the
following terminology: a relation An ∼ Bn is asymptotically valid (a.v.), iff there is an n0 ∈ N,
so that ∀n � n0 : An ∼ Bn is true.

We have seen how the eigenvalues with odd nodal counts can be expressed in terms of
α2. For an even nodal count ν = 2k we are able to identify the positions of the following set
of eigenvalues:

λ2k,0 = 4k2, λ0,2k−1 = (2k − 1)2α2 and all values λpq = p2 + α2q2,

where k = p · q is any decomposition of k with p, q ∈ N.

Before α can be reconstructed it is necessary to decide whether α is bigger, smaller or equal
to 1/4. This is important for later use. It will be done by comparing the position of the
eigenvalues corresponding to odd nodal counts ν = n+1—λ0n = n2α2 for n ∈ 2Z—with a set
of eigenvalues for even nodal counts as described above for ν = n = 2k. The position of λ0n

within this set of eigenvalues can be detected by the different nodal counts. It will then be used
to deduce information on α. We consider k ∈ P, so the set of eigenvalues with nodal count
ν = 2k contains exactly four elements. Due to α2 < 1 it is clear that λ2k,0 > λ0n > λ0,2k−1.
Furthermore λ0n > λ1k is asymptotically valid. Whether λ0n � λk1 or λ0n > λk1 can be read
from the nodal sequence, as all other relative positions within the set are known. There are
two cases. If λ0n > λk1 for some k, we can conclude α2 > k2/(4k2 − 1) > 1/4. Otherwise
we have λ0n � λk1∀k ∈ P and therefore α2 � k2/(4k2 − 1) → 1/4.

Knowing these bounds we are able to reconstruct α from the nodal sequence. To identify
the specific positions of the elements of the set of eigenvalues with even nodal counts, we need
to analyse its structure. As α2 < 1, the following relations are valid:

λ2k,0 = 4k2 > (2k − 1)2α2 is a.v.

λ2k−1,0 = (2k − 1)2α2 > p2 + α2q2∀p, q : p · q = k is a.v. if α > 1/4

λ2k−1,0 = (2k − 1)2α2 < k2 + α2 is a.v. if α � 1/4

λk,1 = k2 + α2 � p2 + α2q2∀p, q : p · q = k.

It is therefore asymptotically valid that the third (second) largest position among a set of
eigenvalues of an even nodal count corresponds to the eigenvalue k2 + α2 if α2 > 1/4
(α2 � 1/4). For k prime the set consists of four eigenvalues, where the lowest position
asymptotically corresponds to the eigenvalue 1 + k2α2. We are now able to construct a
sequence with limit α2. For any k ∈ P we define

k+ = min{i ∈ N : 1 + k2α2 < i2 + α2}
k− = max{i ∈ N : i2 + α2 < 1 + k2α2}.

We always identify the third (second, if α � 1/4) position of a set of eigenvalues of a fixed
even nodal count ν = 2i with i2 + α2. For small nodal counts these positions might be
incorrect, but as we construct a sequence for k → ∞ and the identification is asymptotically
valid, this finite set of incorrect values does not affect the limit. The limit is now constructed
in the same way as in the rectangle case (cf page 7).

The case α2 > 1 can be treated in a similar way and thus theorem 1 is proved for K. �
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4.4. Flat tori

Every eigenvalue λ is determined by its representation vectors (γ ∗
j ). For a given basis (γi)i�n

of � and the corresponding dual basis each representation vector is given by a coefficient
vector qj ∈ Z

n, where n is the dimension of the flat torus. The greatest common denominator
of the coefficient vector is invariant under transformations of the basis. That means we can
associate this gcd directly with the representation vector and call it the gcd of γ ∗. For each
representation vector of an eigenvalue, there is one corresponding gcd. Therefore, the number
of greatest common denominators of an eigenvalue equals its degeneracy.

The complete spectrum is already determined by all eigenvalues, which have at least
one greatest common denominator that equals one. All other eigenvalues are obtained by
multiplying these eigenvalues with squares of natural numbers:

λ = 4π2q�Qq = gcd(q)24π2q̃�Qq̃ = gcd(q)2̃λ with gcd(q̃) = 1.

We call the eigenvalues λ̃ basic eigenvalues. Knowing the nodal sequence we are able to find
the positions of all basic eigenvalues in the ordered spectrum, by choosing the positions which
have nodal count ν = 2. The set of these positions is P2 = {m ∈ N|2 ∈ N (λm)}. In the same
way, we define the set of positions of the k2-multiples for k ∈ N of the basic eigenvalues

Pk = {m ∈ N|2k ∈ N (λm)}.
We denote by pi

k the ith element of Pk . The set of positions of a sequence of eigenvalues which
are the k2-multiples of the ith basic eigenvalue is given by

(
pi

k

)
k∈N

. That is because multiplying
two eigenvalues with a square number conserves their order. Therefore, 2k ∈ N (λm) for
m = pi

k indicates λm = k2̃λi , where λ̃i is the ith basic eigenvalue in the ordered spectrum.
Using the relative positions of the eigenvalues we want to reconstruct their ratio. Therefore,
we choose two arbitrary sequences

(
pi

k

)
k∈N

and
(
p

j

l

)
l∈N

. These two sequences represent the
relative positions of the basic eigenvalues λ̃i and λ̃j and their multiples with squares of natural
numbers. We will construct a sequence whose limit equals λ̃j /̃λi .

Without loss of generality let be pi
1 � p

j

1 . Since pi
1 = p

j

1 implies λj/λi = 1, we consider
the case pi

1 < p
j

1 from now on. That means pi
m < p

j
m∀m ∈ N. For a given m ∈ N we define

mmax = max
{
k ∈ N|pi

k � p
j
m

}
. From the definition it follows pi

mmax
� p

j
m � pi

mmax+1. In
terms of the eigenvalues this becomes

m2
max̃λi � m2̃λj � (mmax + 1)2̃λi.

We obtain the following bounds for the ratio:

m2
max

/
m2 � λ̃j /̃λi � (mmax + 1)2/m2.

As m → ∞,mmax → ∞ and we get

‖(mmax)
2/m2 − (mmax + 1)2/m2‖ � 2‖mmax/m2‖ + ‖1/m2‖

= 2 ‖(mmax)
2/m2‖︸ ︷︷ ︸

�̃λj /̃λi

‖1/mmax‖ + ‖1/m2‖ m→∞−→ 0.

We can now deduce

lim
m→∞(mmax)

2/m2 = λ̃j /̃λi .

In this way we can determine the size of all basic eigenvalues up to a factor. The complete
spectrum is given by the basic eigenvalues multiplied with squares of natural numbers.
Applying lemma 1 completes the proof of theorem 2. �
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5. Remarks

The examples that we have studied support the conjecture on the role of nodal sequences in
the determination of manifolds. The principal approach to determine a manifold by its nodal
sequence is similar for all classes presented here. Even though the investigated systems all
have a very simple structure, it might be interesting to see whether the main idea—identifying
positions in the spectrum with explicit eigenvalues by using the corresponding nodal counts—
can be generalized for more complex systems, e.g., surfaces of revolution.
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Finally, the author thanks Jochen Brüning for introducing him to the field of nodal domains
and lgor Sokolov for support. The author acknowledges the financial support of the German
Israeli Foundation (GIF).

References

[1] Kac M 1966 Am. Math. Mon. 73 1–23
[2] Milnor J 1964 Proc. National Academy of Science USA vol 51 p 542
[3] Sunada T 1985 Ann. Math. 121 186–96
[4] Gordon C, Webb D and Wolpert S 1992 Bull. the Am. Math. Soc. 27 134–8
[5] Brooks R 1999 Contemp. Math. 231 25–35
[6] Blum G, Gnutzmann S and Smilansky U 2002 Phys. Rev. Lett. 88 11
[7] Ullmann D 1983 Biographien hervorragender Naturwissenschaftler, Techniker und Mediziner vol 65 (Leipzig:

BSB B G Teubner Verlagsgesellschaft)
[8] Gnutzmann S, Karageorge P and Smilansky U 2006 Phys. Rev. Lett. 97 090201
[9] Band R, Shapira T and Smilansky U 2006 J. Phys. A: Math. Theor. 39 139999–14014

[10] Gnutzmann S, Smilansky U and Sondergaard N 2005 J. Phys. A: Math. Theor. 38 8921–33
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